ACADEMIC CALENDAR: SESSION- (2024-2025)

NAME OF TEACHER: DR. POONAM BAJPAI

DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC (NEP)-I YEAR (I SEMESTER) (APPLICABLE FROM JULY 2024)

	`	`		ATTECHBELT KOWI JULI 202	<u> </u>						
S.NO.	CLASS	PAPER	UNIT	TOPIC NAME	MONTHLY /	TEACHING	LEARNING	ANY OTHER			
	(YEAR,				WEEKLY	PEDAGOGY	OUTCOMES	DETAIL			
	SEMESTER)				PLAN						
01	02	03	04	05	06	07	08	09			
				tcomes: 1. Know the concepts of cal				ons of one and two			
1	BSC (NEP)	P-1		nd their applications in the form of m							
	_		2. Sketch c	urves in a plane using its mathematic	al properties in t	he different coordinate s	ystems of reference).			
	I YEAR,	(MAJOR)	3. Apply de	rivatives in Optimization, Social scient	ences, Physics ar	nd Life sciences etc.					
	ī	(MAJOK)	4. Get know	4. Get knowledge of curvature, asymptotes, envelopes and evolutes.							
	SEMESTER	DIFFERENTIAL		Limit, continuity and		OFFLINE TEACHING	STUDENTS WILL	EVALUATION			
		CALCULUS	UNIT-I	differentiability of function of	MIN. 09	METHOD	GET THE UNDERSTANDING	THROUGH MONTHLY MOCK			
	CREDITS-4			single variable, Cauchy's	LECTURES	(NOTES IN FORM OF	OF THE TOPIC	TESTS AND			
	FF. 0.4			definition, Heine's definition,		PDF,AUDIO/	DISCUSSED.	ASSIGNMENTS			
	T:04			Uniform continuity, Borel's		VIDEO,CLASS ROOM TEACHING METHOD)		AND DISCUSSIONS			
				theorem, boundedness theorem,		TEACHING METHOD)		THROUGH WHICH			
				Bolzano's theorem, Intermediate				WE ASSESS AND			
				value theorem, extreme value				EVALUATE THE PERFORMANCE			
				theorem, Darboux's intermediate				TERFORMANCE			
				value theorem for derivatives,							
				Chain rule, indeterminate forms.							
				Rolle's theorem, Lagrange and		OFFLINE TEACHING	STUDENTS WILL	EVALUATION			
			UNIT-II	Cauchy Mean value theorems,	MIN	METHOD	GET THE	THROUGH			
			01411-11	•	09 LECTURES	(NOTES IN FORM OF	UNDERSTANDING OF THE TOPIC	MONTHLY MOCK TESTS AND			
				mean value theorems of higher	LECTURES	(NOTES IN FORM OF PDF,AUDIO/	DISCUSSED.	ASSIGNMENTS			
				order, Taylor's theorem with		VIDEO,CLASS ROOM	DISCOURIE.	AND			
				various forms of remainders,		TEACHING METHOD)		DISCUSSIONS			
								THROUGH WHICH			

		Successive differentiation, Leibnitz theorem, Maclaurin's and Taylor's series, Limit and Continuity of functions of two variables, Differentiation of function of two variables, Necessary and sufficient condition for differentiability of functions two variables.				WE ASSESS AND EVALUATE THE PERFORMANCE
UN	NIT-III	Partial differentiation, Euler's theorem on homogeneous function, Schwarz's and Young theorem, Taylor's theorem for functions of two variables with examples, Maxima and minima for functions of two variables, Lagrange multiplier method, Jacobians, Inverse function theorem and implicit function theorem.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UN	NIT-IV	Tangents and normals, Asymptotes, Curvature, Envelops and evolutes, Tests for concavity and convexity, Points of inflexion, Multiple points, Parametric representation of curves and tracing of parametric curves, Tracing of curves in Cartesian and Polar forms.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
Te 1. 2. Si	S. Balach uggested		al Calculus, No S. Davis, Calc	ulus, John Wiley and So	ns, Inc.,2002. 4.	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

			Wah Dafa	womange 1 Digital platforms real limbs	. NIDTEL /CW/A	VAM/MOOCS/On an at-					
				rences: 1.Digital platforms web links nlearninglibrary.mit/edu/courses	. NPIEL/SWA	1 AM/ MOOCS/Opensta	ax.org				
					an.						
				content.upsdc.gov.in/SearchContent.a							
			nttps://ww	ww.lkouniv.ac.in/en/article/e-content-f	acuity-of-scien	<u>ce</u>					
			Course O	utcomes: 1. Find the rank and eigen v	values of matrice	es.		1			
2	BSC (NEP)	P-2		Study the system of linear homogeneous and non-homogeneous equations.							
-			3. Recogni	ize the mathematical objects that are g	groups, and class	sify them as abelian, cyc	clic and permutation	groups, etc.			
	I YEAR,	(MAJOR)		e fundamental concepts of Groups and			•				
	T	(MAJUK)		e the subgroups of cyclic groups.	•	C					
	SEMESTER			the significance of the notion of cose	ts, normal subgi	roups, and factor group.					
				and the concepts of rings, subrings an							
	CREDITS-4			Elementary operations on		OFFLINE TEACHING	STUDENTS WILL	EVALUATION			
	77 0 4	MATRICES	UNIT-1	matrices, Rank of a matrix,	MIN	METHOD	GET THE	THROUGH			
	T:04	_	01,11	Echelon and normal form of a	09 LECTURES	(NOTES IN FORM OF	UNDERSTANDING OF THE TOPIC	MONTHLY MOCK TESTS AND			
		&		matrix, Inverse of a matrix by	LECTORES	PDF,AUDIO/	DISCUSSED.	ASSIGNMENTS			
				elementary operations, System of		VIDEO,CLASS ROOM		AND			
		ALGEBRA		linear homogeneous and non-		TEACHING METHOD)		DISCUSSIONS THROUGH WHICH			
				homogeneous equations,				WE ASSESS AND			
				Theorems on consistency of a				EVALUATE THE			
								PERFORMANCE			
				system of linear equations. Eigen							
				values, Eigen vectors and							
				characteristic equation of a							
				matrix, Cayley-Hamilton theorem							
				and its use in finding inverse of a							
				matrix.							
				Equivalence relations and	MIN	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE	EVALUATION THROUGH			
			UNIT-II	partitions, Congruence modulo n,	09	METHOD	UNDERSTANDING	MONTHLY MOCK			
				Definition of a group with	LECTURES	(NOTES IN FORM OF	OF THE TOPIC	TESTS AND			
				examples and simple properties,		PDF,AUDIO/ VIDEO,CLASS ROOM	DISCUSSED.	ASSIGNMENTS AND			
				Subgroups, Generators of a group,		TEACHING METHOD)		DISCUSSIONS			
				Cyclic groups, Coset		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		THROUGH WHICH			
				decomposition, Lagrange's				WE ASSESS AND			
				theorem and its consequences,				EVALUATE THE PERFORMANCE			
				Fermat and Euler theorems.				- Liu Giuminon			
L				1 crimit and Dater theorems.				1			

	Normal subgroups, Quotient groups.				
UNIT-III	Homomorphism and isomorphism, Fundamental theorem of homomorphism, Theorems on isomorphism, Permutation groups, Even and odd permutations, The alternating group, Cayley's theorem, Direct products.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Rings, types of rings (commutative rings, rings with unity, division rings, Integral domains and fields) with examples, basic properties, sub- rings, Characteristic of a ring, Ideals and quotient rings, Ring homomorphism, Isomorphism theorems, Field of quotient of an integral domain, polynomial rings.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
2. V. Saha Suggested Topics in Web Refe https://op http://hee		ourse in Abstra	AM/ MOOCS/Openstax		FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

	BSC (NEP)		Course Out	comes:				
3	I YEAR,	<mark>P-</mark> 1	and their app		•	•		
	I SEMESTER	(MINOR)	value theorem 3. To unders	the concepts of calculus, namely, limmand Taylor's theorem. It and the concept of double and triple	-	-		
	CREDITS-4		4. To unders	tand the concepts of vector calculus.	T	T	T	I
	T:04	APPLICABLE MATHEMATIC	UNIT-I	Types of matrices, elementary operations on matrices, rank of a matrix, echelon and	MIN 09	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE	EVALUATION THROUGH MONTHLY
		S-I		normal forms of a matrix, inverse of a matrix by elementary operations, systems of linear homogeneous and non homogeneous equations, consistency of linear system of equations, eigenvalues, eigenvectors and characteristic equation of a square matrix, Cayley - Hamilton theorem and its application in finding the inverse of a matrix.	LECTURES	(NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	UNDERSTA NDING OF THE TOPIC DISCUSSED	MOCK TESTS AND ASSIGNMENTS
			UNIT-II	Limit, continuity and differentiability of functions of single variable, successive differentiation, Leibnitz's theorem, Rolle's theorem, Lagrange's and Cauchy's mean value theorems, Taylor's and Maclaurins's series with various forms of remainders.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTA NDING OF THE TOPIC DISCUSSED .	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND

					EVALUATE THE PERFORMANCE
UNI	Limit, continuity and differentiability of functions of two variables, partial derivatives, Euler's theorem for homogeneous functions, total derivative, Taylor's and Maclaurins's theorem for functions of two variables, extrema of functions of two variables, Lagrange's method of unknown multipliers, Jacobian.		OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTA NDING OF THE TOPIC DISCUSSED .	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNI	C-IV Double and triple integration, change of order of integration, application of integration to length, surface and volumes (only Cartesian coordinates), beta, gamma and Dirichlet's integral — basic properties with applications, vector differentiation, gradient, divergence and curl with their physical interpretations, tangent and normal on a surface, directional derivative, line, surface and volume integrals, applications of	MIN 09	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTA NDING OF THE TOPIC DISCUSSED .	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

		Green's, Stoke's and Gauss' divergence theorems (without proofs).			
	Referen	ces:			FINAL
	Textboo	oks			EVALUATION
	1. Linea	r Algebra by K. Hoffman and R. Kur	nze.		THROUGH
	2. Calcu	lus, Volumes I & II by T. M. Aposto	l.		INTERNAL
	3. Math	ematical Analysis by S.C. Malik and	S. Arora, New Age	International	ASSESMENT
	Limited	New Delhi.			UPLODED ON
	Suggest	ed Books			LU EXAM
	1. R. R.	Goldberg: Methods of Real Analysis	s, Oxford & IBH Pu	ıb. Co. Pvt. Ltd.	PORTAL
	2. R. G.	Bartle, The Elements of Real Analys	is, Wiley Internatio	nal Edition.	

ACADEMIC CALENDAR: SESSION- (2024-2025)

NAME OF TEACHER: DR. POONAM BAJPAI

DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC (NEP)-I YEAR (II SEMESTER) (APPLICABLE FROM JANUARY 2025)

S.NO.	CLASS (YEAR,	PAPER	UNIT	TOPIC NAME	MONTHLY/W EEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL
	SEMESTER)							
01	02	03	04	05	06	07	08	09
1	BSC (NEP) I YEAR, I I SEMESTER	P-3 (MAJOR) INTEGRAL	theorems of 2. Beta and 3. The valid	 utcomes: f the families and properties of Ricological Technology d Gamma functions and their proposid situations for the inter-changeal tion of transcendental functions in 	erties. pility of differe	ntiability and integrab	ility with infinite s	sum, and
	CREDITS-4	CALCULUS	* *	e of solids by integrating over cross	-	-	irea or sarraces or	10 volution una
	T:04		UNIT-I	Definite integrals as limit of the sum, Riemann integral, Integrability of continuous and monotonic functions, Fundamental theorem of integral calculus, Mean value theorems of integral calculus, Differentiation under the sign of Integration.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-II	Improper integrals, their classification and convergence, Comparison test, µtest, Abel's test, Dirichlet's test, quotient test, Beta and Gamma functions.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND

		•		STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE FINAL EVALUATION THROUGH INTERNAL ASSESMENT
Suggested Sons. Web Referent https://open	Readings: 3. Erwin Kreyszig, Adrences: Digital platforms web link inlearninglibrary.mit/edu/courses content.upsdc.gov.in/SearchContent.upsdc.gov.in/article/e-content.upsdc.gov.in/article	dvanced Engir ks: NPTEL/SV nt.aspx	neering Mathematics, .	•	UPLODED ON LU EXAM PORTAL

2	BSC (NEP) -	P-4	Course O	itcomes:				
	I YEAR,			and visualize the fundamental ide	eas of coordin	ate geometry.		
	ΙΙ	(MAJOR)		ribe some surfaces by using analy				
	SEMESTER			knowledge about regular geometr				
	CREDITS-4		UNIT-I	General equation of second degree, System of conics,	MIN 09 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILLGET THE UNDERSTANDING	EVALUATION THROUGH MONTHLY MOCK
	T:04	GEOMETRY		Tracing of conics, Confocal conics, Polar equation of conics and its properties.		(NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	OF THE TOPIC DISCUSSED.	TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-II	Three-Dimensional Coordinates, Projection and Direction Cosine, Plane (Cartesian and vector form), Straight line in three dimension (Cartesian and vector form).	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-III	Sphere, Cone and Cylinder.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-IV	Central conicoids, Paraboloids, Plane section of conicoids, Generating lines, Confocal	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND

				conicoids, Reduction of second degree equation.	I	VIDEO,CLASS ROOM TEACHING METHOD)		DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
			2. S. L. L. Suggested 3. Robert . Ltd Web Refe https://ope	xt Books: P. R. Vittal, Analytical Geometry S. L. Loney, The Elements of Coordinate Geometry, Macmillan ggested Readings: Robert J.T. Bell, Elementary Treatise on Coordinate Geometry of three dimensions, Macmillan India						
3	BSC (NEP) – I YEAR, II SEMESTER CREDITS-4	P-2 (MINOR)	Course Ou 1. To under groups. 2. To Know 3. To know transformat	urse Outcomes: To understand the concepts of groups, subgroups, cyclic groups, quotient groups and homomorphism of						
	Т:04	APPLICABL E MATHEMAT ICS- II	UNIT- I	sequences and various tests to chece Equivalence relations and partitions, congruence modulo n, groups, subgroups, cyclic groups, coset decomposition, Lagrange's theorem, Fermat's & Euler's theorems, normal subgroups, quotient groups, homomorphism and homomorphism theorems.	ek convergence of a MIN 09 LECTURES	n infinite series. OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
			UNIT-	Rings, types of rings - commutative rings, rings with unity, division rings, integral	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND		

	domains and fields, subrings, ideals and quotient rings, ring homomorphism and homomorphism theorems, characteristic of a ring, Polynomial rings.		VIDEO,CLASS ROOM TEACHING METHOD)		ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT		MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT	Sequences, limit of a sequence, convergence, divergence and oscillation of a sequence, infinite series and its convergence, geometric and harmonic series, tests for convergence and divergence - comparison test, Cauchy integral test, D'alembert's ratio test, Cauchy's nth root test, Raabe's logarithmic test, DeMorgan and Bertrand's test, alternating series, absolute and conditional convergence, Leibnitz's theorem (without proof).	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	ences:	bra, Narosa.		1	FINAL EVALUATION THROUGH INTERNAL ASSESMENT

	3. R.G. Bartle : Introduction to Real Analysis, Wiley. Suggested books	UPLODED ON LU EXAM PORTAL
	1. J.B. Fraleigh: A First course in Abstract Algebra, Pearson.	
	2. D.S. Dummit & R.M. Foote: Abstract Algebra, Wiley International edition.	

ACADEMIC CALENDAR: SESSION- (2024-2025)

NAME OF TEACHER: DR. POONAM BAJPAI

DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC (NEP)-II YEAR (III SEMESTER) (APPLICABLE FROM JULY 2024)

S.NO.	CLASS	PAPER	UNIT	TOPIC NAME	MONTHLY /	TEACHING	LEARNING	ANY OTHER				
D.1 (O.	(YEAR,	I III LIK	CIVII		WEEKLY	PEDAGOGY	OUTCOMES	DETAIL				
	SEMESTER)				PLAN							
01	02	03	04	05	06	07	08	09				
1	DGG (MED)		Course O									
1	BSC (NEP)	P-5	1. Formulat	1. Formulate Differential Equations for various Mathematical models.								
	II YEAR,		2. Solve fir	st order non-linear differential equation	on and linear dif	ferential equations of high	gher order using va	rious techniques.				
	11 12111,	(MAJOR)	3. Apply th	3. Apply these techniques to solve and analyze various mathematical models.								
	III		11 3	1								
	SEMESTER	ORDINARY		Differential Equations of first		OFFLINE TEACHING	STUDENTS WILL	EVALUATION				
	CREDITS-4	DIFFERENTIAL	UNIT-I	order and first degree, variable	MIN. 09	METHOD	GET THE UNDERSTANDING	THROUGH MONTHLY MOCK				
		EQUATIONS		separable equations and equations	LECTURES	(NOTES IN FORM OF	OF THE TOPIC	TESTS AND				
	T:04	LQOATIONS		reducible to this form, linear		PDF,AUDIO/ VIDEO,CLASS ROOM	DISCUSSED.	ASSIGNMENTS AND				
				equations and Bernoulli equations,		TEACHING METHOD)		DISCUSSIONS				
				Exact differential equations and				THROUGH WHICH				
				integrating factors, special				WE ASSESS AND EVALUATE THE				
				integrating factors and				PERFORMANCE				
				transformations. Differential								
				Equations of first order and higher								
				degree, Clairaut equation, singular								
				solutions. Orthogonal trajectories.		OFFI DIE EEL GINIG	000 10 EN 100 11 11 1	EVILLY VILLENOV				
				Linear Differential Equations with	MIN	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE	EVALUATION THROUGH				
			UNIT-II	constant coefficients,	09		UNDERSTANDING	MONTHLY MOCK				
				homogeneous linear equation with	LECTURES	(NOTES IN FORM OF PDF,AUDIO/	OF THE TOPIC DISCUSSED.	TESTS AND ASSIGNMENTS				
				constant coefficients, Wronskian,		FDF,AUDIO/	DISCUSSED.	AND AND				

	its properties and applications. Second order linear differential equations with variable coefficients: Use of a known solution to find another, normal form, method of undetermined coefficient, variation of parameters,		VIDEO,CLASS ROOM TEACHING METHOD)		DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-III	Systems of first order equations, linear systems, homogeneous linear systems with constant coefficients, Volterra's prey predator equations, Existence and uniqueness of solutions, method of successive approximations, Picard's theorem, Application to systems of first order equations.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Series solutions of differential equations, Power series method. Bessel, Legendre and Hypergeometric functions and their properties, recurrence and generating relations.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
2. S. L Ros Suggested 3. G.F. Sir McGraw F	is: D.P. Choudhary & H.J. Freedma ss, Differential Equations, 3rd I Reading: nmons, Differential Equations	Edition, Wiley with Applicat	ions and Historical 1	Notes, Tata	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

_		1	T =					1				
				penlearninglibrary.mit/edu/co								
				econtent.upsdc.gov.in/SearchC								
			_	<u>vww.lkouniv.ac.in/en/article</u>	<u>e/e-content-l</u>	faculty-of-science						
	BSC (NEP)	D.	Course Outcomes:									
2	- DSC (TVET)	P-6	_	1. The significance of mathematics involved in physical quantities and their uses.								
	II YEAR,	(MATOR)		o understanding the various concepts of basic mechanics like simple harmonic motion, motion under othe								
	111	(MAJOR)	3. To study	To study and to learn the cause-effect related to these.								
	SEMESTER		4. The appl	The applications in observing and relating real situations/structures.								
				Frame of reference, work energy	MIN	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE	EVALUATION THROUGH				
	CREDITS-4		UNIT-1	principle, Forces in three	09		UNDERSTANDING OF THE TOPIC DISCUSSED.	MONTHLY MOCK				
	T:04	MECHANICS		dimensions, Poinsot's central axis,	LECTURES	(NOTES IN FORM OF PDF,AUDIO/		TESTS AND ASSIGNMENTS				
	1.04	WIECHANICS		Wrenches, Null lines and planes.		VIDEO,CLASS ROOM	DISCUSSED.	AND				
						TEACHING METHOD)		DISCUSSIONS THROUGH WHICH				
								WE ASSESS AND				
								EVALUATE THE PERFORMANCE				
				***		OFFLINE TEACHING	STUDENTS WILL	EVALUATION				
				Virtual work, Stable and Unstable	MIN	METHOD	GET THE	THROUGH				
			UNIT-II	equilibrium, Catenary, Catenary of uniform strength.	09 LECTURES	(NOTES IN FORM OF	UNDERSTANDING OF THE TOPIC	MONTHLY MOCK TESTS AND				
				dinform strength.	LECTURES	PDF,AUDIO/	DISCUSSED.	ASSIGNMENTS				
						VIDEO,CLASS ROOM TEACHING METHOD)		AND DISCUSSIONS				
						TEACHING METHOD)		THROUGH WHICH				
								WE ASSESS AND EVALUATE THE				
								PERFORMANCE				
				Velocities and accelerations along		OFFLINE TEACHING	STUDENTS WILL	EVALUATION				
			UNIT-III	radial and transverse directions,	MIN 09	METHOD	GET THE UNDERSTANDING	THROUGH MONTHLY MOCK				
				and along tangential and normal	LECTURES	(NOTES IN FORM OF	OF THE TOPIC	TESTS AND				
				directions, Simple Harmonic		PDF,AUDIO/ VIDEO,CLASS ROOM	DISCUSSED.	ASSIGNMENTS AND				
				motion, Motion under other law of TEACHING METHOD)								
				forces. Elastic strings, Motion in								
				resisting medium, Constrained				WE ASSESS AND EVALUATE THE				
				motion, Motion on smooth and				PERFORMANCE				
				rough plane curves.								

			UNIT-IV	Motion of particles of varying mass, Rocket motion, Central orbit, Kepler's laws of motion, Motion of particle in three dimensions, Rotating frame of reference, Rotating Earth, Acceleration in terms of different coordinates systems.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			
			Text Book 1. R.C. Hib 2. Nelson, I Suggested 3. J.L. Syng Web Refe https://or	References: Final Evalua' Through Internal Evalua' Through Internal Assessment Internal Evalua' Through Internal Intern							
3	BSC (NEP) II YEAR, III SEMESTER CREDITS-4 T:04	P-3 (MINOR) Applicable Mathematics— III	integral for series. 2. To under 3. To know	Course Outcomes: 1. To know the basic concepts of complex analysis including Cauchy's ntegral formula, derivative of analytic functions, Taylor's and Laurent's series. 2. To understand various methods for numerical solutions of equations. 3. To know how to do numerical differentiation and integration. 4. To solve systems of linear equations by standard methods. Functions of complex variables - OFFLINE TEACHING STUDENTS WILL EVA							

UNIT-II	of analytic functions, formulae for first, second and nth derivatives, Taylor's and Laurent's series, singularities, zeroes and poles of order n. Numerical solutions of equations - bisection method, secant method, regula -falsi method, Newton - Raphson method and interpolation with equispaced points.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-III	Finite differences, Newton's forward and backward interpolation formula, Lagrange interpolation formula, divided differences and Newton's formula, numerical differentiations and integration - trapezoidal and Simpson's rules, Newton-Cotes integration formula, Ramberg integration, Gaussian quadrature.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Systems of linear equations - Gauss elimination method, Gauss-Jordan method, LU decomposition, Jacobi method, Gauss - Seidel method, the algebraic eigenvalue problem - Jacobi's method and power method.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

References: Text Books: 1. J.W. Brown and R.V. Churchill: Complex Variables and Applications, Mc Graw Hill. 2. M.K. Jain, S.R.K. Iyengar and R.K. Jain: Numerical methods for scientific and engineering computations, New Age International, New Delhi.	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
Suggested Readings: 1. S.S. Sastry: Introductory Methods of Numerical Analysis, Prentice Hall of India. 2. Complex Variables, Schaum's Outline Series Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses http://heecontent.upsdc.gov.in/SearchContent.aspx https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science	

ACADEMIC CALENDAR: SESSION- (2024-2025)

NAME OF TEACHER: DR. POONAM BAJPAI

DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC (NEP)-II YEAR (IV SEMESTER) (APPLICABLE FROM JANUARY 2025)

CLILDD		11 1 E H (1) B		(THE LECTION THOU	1111 2020 /								
S.NO.	CLASS	PAPER	UNIT	TOPIC NAME	MONTHLY/W	TEACHING	LEARNING	ANY OTHER					
	(YEAR,				EEKLY PLAN	PEDAGOGY	OUTCOMES	DETAIL					
	SEMESTER)												
01	02	03	04	05	06	07	08	09					
			Course O	ourse Outcomes:									
1	BSC (NEP)	P-7											
1	_		1. To develop mathematical skills in calculus and analysis.										
	II YEAR,	(MATOD)		•									
	* * 7	(MAJOR)	2. To get k	o get knowledge of Laplace Transforms and Fourier series.									
	I V SEMESTER	MATHEMATICAL	3. To get a	o get acquainted with the essentials of calculus of variations.									
	SEMESTER	METHODS											
	CREDITS-4		UNIT-I	Definition of a sequence, theorems	MIN	OFFLINE TEACHING	STUDENTS WILL	EVALUATION					
			01,111	on limits of sequences, bounded	09	METHOD	GET THE	EVALUATION					
	T:04			and monotonic sequences,	LECTURES	(NOTES IN FORM OF	UNDERSTANDING OF THE TOPIC	THROUGH MONTHLY MOCK					
				Cauchy's convergence criterion,		PDF,AUDIO/	DISCUSSED.	TESTS AND					
						VIDEO,CLASS ROOM		ASSIGNMENTS					
				Cauchy sequence, limit superior		TEACHING METHOD)		AND					
				and limit inferior of a sequence,				DISCUSSIONS THROUGH WHICH					
				subsequence, Series of non-				WE ASSESS AND					
				negative terms, convergence and				EVALUATE THE					
				divergence, Comparison tests,				PERFORMANCE					
				Cauchy's integral test, Ratio tests,									
				Root test, Raabe's logarithmic test,									
				de Morgan and Bertrand's tests,									
				alternating series, Leibnitz's									
				theorem, absolute and conditional									
				convergence. Sequences and series									
		J		convergence. Sequences and series									

UNIT-II	of functions: point wise and uniform convergence of sequences of functions, consequences of uniform convergence, integration and differentiation of series of functions. Existence theorems for Laplace transforms, Linearity of Laplace transform and their properties, Laplace transform of the derivatives and integrals of a function, Convolution theorem, inverse Laplace transforms, Solution of the differential equations using Laplace transforms.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-III	Fourier series, Fourier expansion of piecewise monotonic functions, Half and full range expansions, Fourier transforms (finite and infinite), Fourier integral.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Calculus of variations-Variational problems with fixed boundaries-Euler's equation for functionals containing first order derivative and one independent variable, Extremals, Functionals dependent on higher order derivatives, Functionals dependent on more than one independent variable,	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

				Variational problems in parametric Form.				
			2. RG Bartle Suggested R 3. G.F. Sim McGraw Hil 4. A.S. Gupt Web Refere https://ope http://heed	stol. Mathematical Analysis, I e, Introduction to Real Analys Readings: mons, Differential Equations	is, Wiley India with Applica pplications Pren nks: NPTEL/S urses content.aspx	ations and Historica ntice Hall India. WAYAM/ MOOCS/C	·	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
2	BSC (NEP) – II YEAR, I V SEMESTER CREDITS-4 T:04	P-8 (MAJOR)	Course Ou 1. The fundan 2. The concep 3. Basic concepts basis. 4. Automorph 5. Group action	mental concept of Rings, Fields, sub of of linear independence of vectors cepts of linear transformations, the hisms for constructing new groups from, Sylow theorems and their appli	rings, integral do over a field, the Rank-Nullity Th rom the given gr cations to check	omains and the correspondence of basis and the dimeorem, matrix of a line oup.	mension of a vector	•
		& ABSTRACT ALGEBRA	6. Compute:	inner products and determine orthogout Automorphism, inner automorphism, automorphism groups and their computations, Conjugacy relations, Normaliser, Counting principle and the class equation of a finite group, Center of group of prime power order, simple groups, Group action, Burnside lemma, Sylow theorems and its applications.	MIN 09 LECTURES	OF SPACES. OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILLGET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

	UNIT-II	Prime and maximal ideals, Euclidean Rings, Principal ideal rings, Polynomial Rings, Polynomial over the Rational Field, The Eisenstein Criterion, Polynomial Rings over Commutative Rings, unique factorization domain.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	UNIT-III	Vector spaces, Subspaces, Linear independence and dependence of vectors, Basis and dimension, Quotient space, Linear transformations, Direct sums, The Algebra of linear transformations, rank nullity theorem, their representation as matrices, Linear functionals, Dual space, Characteristic values, Cayley Hamilton Theorem.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	UNIT-IV	Inner product spaces, Cauchy-Schwarz inequality, Orthogonal vectors, Orthonormal sets and bases, Bessel's inequality for finite dimensional spaces, Gram-Schmidt orthogonalization process, Bilinear and Quadratic forms.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
1 2 3	2. Algebra by	: Algebra by I. N. Herstein. V. Sahai and V. Bist ebra by V. Sahai and V. Bist				FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

			4 T : A1	-11V H-ff1D V							
				gebra by K. Hoffman and R. Kunze.	1 NIDEEL /	011111111111111111111111111111111111111					
				rences: Digital platforms web li		SWAYAM/ MOOCS/	Openstax.org				
				oenlearninglibrary.mit/edu/cou econtent.upsdc.gov.in/SearchC							
						aculty of acionac					
2	BSC (NEP) -	D 4		ww.lkouniv.ac.in/en/article	e-content-1	acuity-01-science					
3	II YEAR,	<mark>P-</mark> 4	Course O			•					
	,	(stand application and techniques of s	olving various t	ypes of					
	IV	(MINOR)	•	ferential equations.							
	SEMESTER			understand the Laplace transforms and its applications in solving							
	CREDITS-4		differential	•							
				To understand Fourier series and Fourier transforms.							
	T:04	Applicable		o understand standard techniques for finding numerical solution of							
		Mathematics-		ordinary differential equations.							
		IV	UNIT-I	Ordinary differential equations -	MIN 09	OFFLINE TEACHING METHOD	STUDENTS WILLGET THE	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND			
				Bernoulli's equation, exact	LECTURES		UNDERSTANDING				
				differential equations and		(NOTES IN FORM OF PDF,AUDIO/	OF THE TOPIC				
				integrating factors, special		VIDEO,CLASS ROOM	DISCUSSED.				
				integrating factors and		TEACHING METHOD)		DISCUSSIONS THROUGH WHICH			
				transformations, differential				WE ASSESS AND			
				equations of order one and				EVALUATE THE			
				degree more than one, Clairaut's				PERFORMANCE			
				equation, singular							
				solutions and orthogonal							
				trajectories, Linear differential							
				equations with constant							
				coefficients, homogeneous Linear							
				differential equations, series							
				solutions of Legendre's,							
				Bessel's and hypergeometric							
				equations and their basic							
				properties.							

UNIT-II	Laplace transforms - existence theorem, Laplace transforms of derivatives and integrals, inverse Laplace transform, convolution theorem, applications to simple linear differential equations.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
UNIT-III	Periodic functions, Fourier series, Fourier expansion of piecewise monotonic functions, half and full range expansions, Fourier transforms (finite and infinite), Fourier integral.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
UNIT-IV	Numerical solution of ordinary differential equations - Taylor series method, Euler's method, Runge - Kutta method, Milne's method, Adam's method.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
References: Text Books: 1. G. F. Simmons: Differential Equations with Applications and Historical Notes, Tata McGraw Hill. 2. M.K. Jain, S.R.K. Iyengar and R.K. Jain: Numerical methods for scientific and engineering computations, New Age International, New Delhi. 3. T. M. Apostol: Mathematical Analysis.							

Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org	
https://openlearninglibrary.mit/edu/courses	
http://heecontent.upsdc.gov.in/SearchContent.aspx	
https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science	

ACADEMIC CALENDAR: SESSION- (2024-2025)

NAME OF TEACHER: DR. POONAM BAJPAI

DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC(NEP)-III YEAR (V SEMESTER) (APPLICABLE FROM JULY 2024) EACH PAPER CARRIES 100 MARKS (4 CREDITS)

S.NO.	CLASS	PAPER	UNIT	TOPIC NAME	MONTHLY/	TEACHING	LEARNING	ANY OTHER					
	(YEAR, SEMESTER)				WEEKLY PLAN	PEDAGOGY	OUTCOMES	DETAIL					
01	02	03	04	05	06	07	08	09					
I	BSC (NEP) -III YEAR, V SEM CREDITS-4	P-09 NUMERICAL ANALYSIS	1. Some nu equations, u	Some numerical methods to find the zeroes of nonlinear functions of a single variable and solution of a system of linear uations, up to a certain given level of precision. Interpolation techniques to compute the values for a tabulated function at points not in the table.									
	T:04		3.Application numerical s UNIT-I	ons of numerical differentiation and solutions. Solution of equations: bisection, Secant, Regular Falsi, Newton Raphson's method, Newton's method for multiple roots, Interpolation, Lagrange and Hermite interpolation, Difference schemes, Divided differences, Interpolation formula using differences.	MIN. 06 LECTURES	O CONVERT differential equal offline TEACHING METHOD (NOTES IN FORM OF PDF, AUDIO/VIDEO, CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE					

		Numerical differentiation, Numerical Quadrature: Newton Cotes Formulas, Gaussian Quadrature Formulas, System of Linear equations: Direct method for solving systems of linear equations (Gauss elimination, LU Decomposition, Cholesky Decomposition), Iterative methods (Jacobi, Gauss Seidel, Relaxation methods). The Algebraic Eigen Value problem: Jacobi's method, Givens method, Power method.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UN		Numerical solution of Ordinary differential equations: Euler method, single step methods, Runge-Kutta method, Multi-step methods: Milne-Simpson method, Types of approximation: Last Square polynomial approximation, Uniform approximation, Chebyshev polynomial approximation.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	NIT-IV	Difference Equations and their solutions, Shooting method and Difference equation method for solving Linear second order differential equation with boundary conditions of first, second and third type.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	<mark>ference B</mark>	<mark>sooks:</mark>				FINAL EVALUATION

			Iye 2. Into Suggested 3. Kandasa: Web Refer Digital plat https://ope-http://heec	my P. & et Al., Numerical Methods, S	lysis by S. S. S. S. S. Chand & Co / MOOCS/Op	Sastry o. enstax.org	, S.R.K.	THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
п	BSC (NEP) -III YEAR, V SEM CREDITS-4 T:04	P-10 ANALYSIS	2. Know the 3. Understar equations. 4. Evaluate 5. Expand sapply Cauce UNIT-I	and the basic concepts of metric space e concepts such as open balls, closed and the significance of differentiability the contour integrals and understand some simple functions as their Taylor by Residue theorem to evaluate integration and examples of metric spaces, Neighborhoods, Interior points, Limit Points, Open and closed sets, Convergent and Cauchy sequences, Completeness, Cantor's intersection theorem. Uniform convergence of sequences and series of functions, Uniform convergence and continuity, Uniform convergence and integration, Uniform convergence and differentiation, Power series.	balls, compact of complex variether role of Ca and Laurent strals. MIN. 06 LECTURES	offline teaching to classify the nature of t	o the understanding of the Cauchy integrated of singularities, find STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	al formula. Tesidues and EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-II	Stereographic projection, Continuity and Differentiability of	MIN 06 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDING	EVALUATION THROUGH MONTHLY MOCK

	complex functions, Analytic functions, Cauchy Riemann equations, Harmonic functions.		(NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	OF THE TOPIC DISCUSSED.	TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-III	Complex integration, Cauchy-Goursat theorem, Cauchy's Integral formula, Formulae for first, second and nth derivatives, Cauchy's Inequality, Liouville's Theorem, Elementary functions, Mapping by elementary functions, conformal mapping.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Taylor and Laurent Series, Absolute and uniform convergence of Power series, Residues and Poles, Residue theorem, Zeros and poles of order m, Evaluation of improper real integrals, Definite integrals involving sines and cosines.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
2. COMPI Suggested 3. Magnus Web Refe Digital pla https://ope	TICAL ANALYSIS BY SHANTI NARAIN. ARIABLE AND APPLICATIONS BY BROWN & CHURCHILL. ings: rt, Fundamental Mathematical Analysis, Springer Undergraduate Mathematics Series				

			https://www	w.lkouniv.ac.in/en/article/e-conte	nt faculty of	gaianaa						
III	BSC (NEP)	P-11A	Course Ou		m-racuity-01-	SCICIICE						
m	-III YEAR, V SEM	INTEGRAL & PARTIAL	1. Describe	e different types of Linear integral		d partial differential equ	nations for the imp	part knowledge of				
	CREDITS-4	DIFFERENTIAL formulation of practical problems of applied mathematics.										
	T:04	EQUATIONS	2. Understand the theoretical basic behavior of different types of arising problems such as Fredholm, Volterra, Singular, Hilbert and Cauchy integral equations.									
			•	3. Explain the foundations of various problems related to Wave, Laplace and Diffusion equations by the method of variables.								
			4. Deal with problems in applied mathematics, theoretical mechanics and mathematical physics and engineering									
			UNIT-1	Origin of first order partial differential equations. Partial differential equations of the first order and degree one, Lagrange's solution, Partial differential equation of first order and degree greater than one. Cauchy's method of characteristic, Charpit's method of solution, Surfaces orthogonal to the given system of surfaces.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE				
			UNIT-II	Origin of second order PDE, Solution of partial differential equations of the second and higher order with constant coefficients, Classification of linear partial differential equations of second order, Solution of second order partial differential equations with variable coefficients, Monge's method of solution, Cauchy's problem for Homogenous wave	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE				

		equation, Properties of Harmonic function, Methods of separation of variable for solving Laplace, wave and diffusion equations.				
U	JNIT-III	Linear Integral Equations-Definition and Classification of conditions, Special kinds of Kernels, Eigen values and Eigen functions, Convolution integral, Inner product, Integral equations with separable Kernels. Reduction to a system of algebraic equations.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
U	JNIT-IV	Fredholm alternative, Fredholm Theorem, Fredholm alternative theorem, Approximate method, Method of successive approximations, Iterative scheme. Solution of Fredholm and Volterra integral equation, Results about resolvent Kernel	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
To 1.	Reference book: Text Books: 1. I.N. Sneddon: Elements of Partial Differential Equations, Mc -Graw Hill, 1988. 2. Ram P. Kanwal, Linear Integral Equations (2nd ed.), Birkhäuser, Boston.					
3. D	Suggested Readings: 3. T. Amarnath: An Elementary Course in Partial Differential Equations, Narosa Publishing House, New Delhi, 2005. 4. Tyn Myint U: Partial Differential Equations of Mathematical Physics, Elsevier Publications. Web References:					

				forms web links: NPTEL/SWAYAM nlearninglibrary.mit/edu/courses	/ MOOCS/Ope	enstax.org			
			http://heec	ontent.upsdc.gov.in/SearchContent.as w.lkouniv.ac.in/en/article/e-content-fa		ce			
Ш	BSC (NEP)	P-11 B	Course Ou						
	-III YEAR, V SEM CREDITS-4 T:04	DISCRETE MATHEMATICS	Course Outcomes: 1. Lattices and their types. 2. Boolean algebra, switching circuits and their applications. 3. Graphs, their types and its applications in study of shortest path algorithms. 4. Display familiarity with the mathematical models which are the integral part of the hardware and software of computer science. 5. Elaborate and expand their understanding of the tools helpful in the implementation of circuit design, AI algorithms and compiler construction.						
			UNIT-1	Propositional Logic- Proposition logic, basic logic, logical connectives, truth tables, tautologies, contradiction, normal forms (conjunctive and disjunctive), modus ponens and modus tollens, validity, predicate logic, universal and existential quantification, proof by implication, converse, inverse contrapositive, contradiction, direct proof by using truth table.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
			UNIT-II	Boolean Algebra- Basic definitions, Sum of products and products of sums, duality principle, Boolean functions, Logic gates and Karnaugh maps. Lattice, Duality, types of lattices, sublattices, bounded lattices, distributive lattices,	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	

	complemented lattices, modular lattices, join irreducible elements.	MIN	OFFLINE TEACHING	STUDENTS WILL	EVALUATION
UNIT-III	Combinatorics- Inclusion-exclusion, recurrence relations (nth order recurrence relation with constant coefficients, Homogeneous recurrence relations, Inhomogeneous recurrence relations), generating function (closed form expression, properties of G.F., solution of recurrence relations using G.F. solution of combinatorial problem using G.F.)	MIN 06 LECTURES	METHOD (NOTES IN FORM OF PDF,AUDIO/VIDEO,CLASS ROOM TEACHING METHOD)	GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Finite Automata- Basic concepts of automation theory, Deterministic Finite Automation (DFA), transition function, transition table, Non Deterministic Finite Automata (NDFA), Mealy and Moore machine, Minimization of finite automation.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

			Reference book: Text books: 1. Discrete Mathematics by C. L.Liu. 2. Discrete Mathematics with computer application by Trembley and Manohar. 3. Mendelson, Elliott: Introduction to Mathematical Logic, Chapman & Hall, 1997 4. John E. Hoprcroft, Rajeev Motwani, Jeffrey D. Ullman: Introduction to Automata Theory, Languages and Computation, Pearson Education, 2000 Suggested Readings: 5. Arnold B. H.: Logic and Boolean Algebra, Prentice Hall, 1962 6. K. H. Rosen: Discrete Mathematics and its applications, MGH 1999 Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses http://heecontent.upsdc.gov.in/SearchContent.aspx https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science					
Ш	BSC (NEP) -III YEAR, V SEM CREDITS-4 T:04	P-11 C NUMBER THEORY	2. Solving l	knowledge of primes, congruences, quippendictions and recurrence resolutions and recurrence resolutions and recurrence resolutions and recurrence resolutions and recurrence resolutions; primes; congruences; Fermat's theorem, Euler's theorem and Wilson's theorem; Fermat's quotients and their elementary consequences; solutions of congruences; Chinese remainder theorem; Euler's phi-function. Congruences		OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

UNIT-II	Congruence modulo powers of prime; primitive roots and their existence; quadratic residues; Legendre symbol, Gauss' lemma about Legendre symbol; quadratic reciprocity law; proofs of various formulations; Jacobi symbol.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-III	Diophantine Equations, Solutions of $ax + by = c$, $xn+yn=zn$; properties of Pythagorean triples; sums of two, four and five squares; assorted examples of diophantine equations.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Generating Functions and Recurrence Relations, Generating Function Models, calculating coefficient of generating functions, Partitions, Exponential Generating Functions, A Summation Method. Recurrence Relations: Recurrence Relation Models, Divide and conquer Relations, Solution of Linear, Recurrence Relations, Solution of Inhomogeneous Recurrence Relations, Solutions with Generating Functions.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

Reference book: Text books: 1. Niven, I., Zuckerman, H. S. and Montgomery, H. L. (2003) An Int. to the Theory of Numbers (6th edition)	FINAL EVALUATION THROUGH INTERNAL
John Wiley and sons, Inc., New York.	ASSESMENT UPLODED ON LU
2. Burton, D. M. (2002) Elementary Number Theory (4th edition) Universal Book Stall, New Delhi.	EXAM PORTAL
3. Balakrishnan, V. K. (1996) Introductory Discrete Mathematics, Dover Publications. Suggested Readings:	
4. Balakrishnan, V. K. (1994) Schaum's Outline of Theory and Problems of Combinatorics Including Concepts of Graph Theory, Schaum's Outline	
Web References:	
Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses	
http://heecontent.upsdc.gov.in/SearchContent.aspx	
https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science	

❖ NOTE: THERE WILL BE AN INTERNSHIP / TERM ASSIGNMENT IN V SEMESTER (NEP).

✓ Credit :04

ACADEMIC CALENDAR: SESSION- (2024-2025)

NAME OF TEACHER: DR. POONAM BAJPAI

DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC(NEP)-III YEAR (VI SEMESTER) (APPLICABLE FROM JANUARY 2025) EACH PAPER CARRIES 100 MARKS (4

CREDITS)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY/ WEEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL		
01	02	03	04	05	06	07	08	09		
I	BSC (NEP) -III YEAR, VI SEM CREDITS-4	P-12 ADVANCED ALGEBRA	 Give the Construc Understa 	Course Outcomes: 1. Give the structure of an abelian group of a given order. 2. Construct the splitting field extension of a given polynomial. 3. Understand the interplay of group theory and field theory. 4. Determine the minimal polynomial of an algebraic element.						
	T:04		UNIT-1	Series of groups, Schreier theorem, Jordan Holder theorem, solvable groups, Nilpotent groups, Insolvability of Sn for n>5,	06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
			UNIT-1I	Finite Abelian groups, primary decomposition theorem, basis theorem, fundamental theorem of finite Abelian group, elementary divisors and invariant factors,	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		

			UNIT-1II	Field extensions: finite extension, finitely generated extension, algebraic extension, simple extension, transcendental extension, finite field.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
			UNIT-1V	Splitting field, algebraically closed field, normal extension, separable extension, primitive element theorem. Galois theory- Galois group, Galois extension, Fundamental theorem of Galois theory, Artin's theorem, Fundamental theorem of algebra (Algebraic Proof)	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
			References: Text Books: 1. V. Sahai & V. Bist: Algebra, Fourth Edition, Narosa. 2. J. A. Gallian, Contemporary Abstract Algebra, 4th edition, Narosa 3. DJS Robinson, An Introduction to Abstract Algebra, Hindustan Book Agency. Suggested Readings: 4. J. B. Fraleigh: A first course in Abstract algebra, Narosa 5. S. Lang: Algebra, Addison Wesley. Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses http://heecontent.upsdc.gov.in/SearchContent.						
II	BSC (NEP)	P-13	https://w	<u>ww.lkouniv.ac.in/en/article/e-ctromes:</u>	content-facu	<u>ılty-of-science</u>			
	-III YEAR, VI SEM	DIFFERENTIAL	1. Explain t	he concept of differentiable geometry					
	CREDITS-4	GEOMETRY & TENSOR ANALYSIS		nd the concepts of tensors in differen rious concept of differential calculus		y.			

T:04	UNIT-1	Local theory of curves-Space curves, Examples, Plane Curves, tangent and normal and binormal, Osculating Plane, normal plane and rectifying plane, Helices, Serret-Frenet apparatus, contact between curve and surfaces, tangent surfaces, involutes and evolutes of curves, Bertrand curves, Intrinsic equations, fundamental existence theorem for space curves	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	UNIT-II	Metric-first fundamental form and arc length, Direction coefficients, families of curves, intrinsic properties, geodesics, canonical geodesic equations, normal properties of geodesics, geodesics curvature, Gauss-Bonnet theorem, Gaussian curvature, normal curvature, Meusneir's theorem, mean curvature, Gaussian curvature, Gaussian curvature, Gaussian curvature, Gaussian curvature, Gaussian curvature, Umbilic points, lines of curvature, Rodrigue's formula, Euler's theorem.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOC TESTS AND ASSIGNMENTS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE AND DISCUSSIONS
	UNIT-III	Tensor algebra: Vector spaces, the dual spaces, tensor product of vector spaces, transformation formulae, contraction, special tensor, inner product, associated tensor. Tensor Analysis: Contravariant and covariant vectors and tensors, Mixed tensors, Symmetric and	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

UNIT-IN	skew-symmetric tensors, Algebra of tensors, Contraction and inner product, Quotient theorem, Reciprocal tensors, Christoffel's symbols, Covariant differentiation. Gradient of scalars, Divergence of a contra-variant vector, covariant vector and conservative vectors, Laplacian of an invariant, curl of a covariant vector, irrotational vector, Riemannian space, Riemannian curvatures and their properties, Ricci tensor, and scalar curvature, Einstein space and Einstein tensor, Geodesics.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF, AUDIO/ VIDEO, CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
Text bood 1. T.J. V 2. S.Land 3. B. O'I 4. R.S. M Pothish Sugges 5. David Web Red Digital https://h	Text books: Text books: T.J. Willmore, An introduction to Differential Geometry, Dover Publication 2012. S. S.Lang., Fundamentals of Differential Geometry; Springer, 1999. B. O'Neil, Elementary Differential Geometry, 2nd Edition, Academic press, 2006. R.S. Mishra, A Course in Tensors with Application to Riemannian Geometry, othishala 1988. Suggested Readings: David C. Kay, Tensor Analysis, Schaum's Outline series McGraw Hill 1988. Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses http://heecontent.upsdc.gov.in/SearchContent.aspx https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science				

Ш	BSC (NEP) -III YEAR, VI SEM CREDITS-4 T:04	ADVANCED DIFFERENTIAL EQUATIONS 1. diff eq 2. 3.	 Course Outcomes: Solve the system of 1st order differential equations, 2nd order differential equations, nth order differential equations, oscillatory equation, stability and unstability of linear and non-linear system of equations. Conceptualize Green's functions and nature of critical points. Prove advanced understanding of topics in applied mathematics, computational physics etc. 						
			UNIT-1	Linear System- Introduction, properties of linear homogeneous systems, Abel-Liouville formula, Periodic linear System, Floquet's theorem, Solution of nth order linear homogeneous equation with variable coefficients.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
			UNIT-II	Inhomogeneous linear system, nth order linear non-homogeneous equation with variable coefficients, Hurwitz's theorem, Non-linear system, Volterra's prey & predator equation, Non linear equations: Autonomous system.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
			UNIT-III	The phase plane & its phenomena, types of critical points & Stability, Critical points & stability for linear system, stability by Liapunov's direct method. Green function, Construction of Green functions, Green function of homogeneous and non-homogeneous end	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	

conditions, Strum Liouville systems. UNIT-IV Second order differential equation: Introduction Preliminary results, Boundednes of solutions, Oscillatory equation number of zeroes, Pruffer' transformation, Strum theorem Strum's comparison theorem.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE
REFERENCE BOOK: Text books: 1. G. F. Simmons: Differential Equation 2. B. Rai, D. P. Chaudhary, H.I. Freedman Narosa Publishing House. 3. S. L. Ross: Differential Equations, Windows Suggested Readings: 4.E. A. Coddington: An Introduction Web References: Web References: Web References: Digital platforms web links: NPTEL/SW https://openlearninglibrary.mit/edu/cohttp://heecontent.upsdc.gov.in/Searchhttps://www.lkouniv.ac.in/en/articentent/simplesses/	n: A course in ley Indian, 20 on to Ordina AYAM/ MOO ourses	n Ordinary Differentia 004 ary Differential Equa CS/Openstax.org		FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

Ш	BSC (NEP) -III YEAR, VI SEM CREDITS-4 T:04	OPERATIONS RESEARCH 1. Be 2. Be 3. Be and ol 4. to t theory	Course Outcomes: 1. Be able to understand the application of OR and frame a LP Problem with solution 2. Be able to build and solve Transportation and Assignment problems using appropriate method. 3. Be able to design and solve simple models of CPM and queuing to improve decision making and develop critical thinking and objective analysis of decision problems. 4. to take best course of action out of several alternative courses for the purpose of achieving objectives by applying game theory and sequencing models.							
			UNIT-1	Linear programming problems, Slack and surplus variables, Statement of general Linear programming Problems, Standard and matrix forms of linear programming problem, Basic feasible solution.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
			UNIT-II	Convex sets, Fundamental theorem of linear programming, Simplex method. Artificial variables, Big-M method, Twophase method, Revised simplex method.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
			UNIT-III	Resolution of degeneracy, Duality in linear programming problems, Dual simplex method, Primal-dual relation analysis, integer programming.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		

UNIT-IV Transportation problems, assignment problems, Queuing Theory, Markov Chains, PERT and CPM, Optimization and constrained Optimization using Langrange's Multiplier.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
2. Kanti Swaroop, P. K. Gupta, Manmoha 29 Suggested Readings: 3. G. Hadley, Linear Programming Web References: Digital platforms web links: NPTEL/SWA 				